
Journal of Machine Learning Research 23 (2022) 1-13 Submitted 5/24; Published N/A

Exploring the Dynamics of Adam

Alexandre Kaiser amk1004@nyu.edu

Department of Computer Science

Courant Institute, NYU

NY, NY, USA

Editor: None

Abstract

This project explores some of the possible reasons for why Adam dominates the market
for training deep neural networks. First we inspect how Adam deals with the noise of
stochastic gradients, and find that although the variance of its steps may converge to zero,
it does so much slower than Adam’s own typical convergence time. Then we analyze the
dynamics of Adam in three different optimization settings: (i) crossing flat regions of the
loss, (ii) avoiding slow time around saddle points, (iii) converging quickly in valleys. We find
that Adam outperforms other competitive optimizers when it comes to saddle dynamics,
however its performance in valleys appear to be dominated by that of RMSProp. Lastly,
although we find Adam can cross flats to a certain extent, we find serious reasons to doubt
the practical importance this ability.

Keywords: adam, dynamics, flat, saddle, valley

1 Introduction

Adam, short for Adaptive Moment Estimation Kingma and Ba (2017), is a stochastic gra-
dient descent algorithm that has become the gold standard optimizer for training neural
networks. Adam was initially designed to merge concepts from Adagrad and RMSprop to
create a stable first order method that works with sparse gradients and requires little-to-no
fine-tuning. In practice, Adam is so reliable that if training is unsuccessful the researchers
will change everything else before thinking about changing Adam. Nevertheless, it has very
little theoretical backing.

There are many explanations that people refer to for why Adam is superior to SGD,
for this project we will explore some of the most prominent claims both theoretically and
empirically. Starting with a simple claim, the addition of a moving average for the first
moment enables Adam to cross flat regions of the loss surface. Practically every other
gradient descent method steps in the direction of an unbiased estimate of the gradient at
that step, thus their dynamics end once reaching a flat. In convex optimization, reaching a
flat is good news because you have reached the global optima. However, the loss landscape
of neural network is not convex, which warrants the ability to explore past these local
optima.

Next, motivated by the work of Jacot et al. A. Jacot et al. (2022) on the saddle-to-
saddle dynamics of neural networks, we will attempt to characterize Adam’s dynamics near
saddle points. In non-convex optimization, saddle-point dynamics are crucial to understand
because the dynamics are slowest the closer you are to one. This fact means that you can

©2022 Alexandre Kaiser.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-0000.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-0000.html

Alexandre Kaiser

approximate the time to converge to a local optima by aggregating the time spent near
a saddle. If Adam could avoid these slow-downs, it could possibly explain why Adam
empirically has the fastest convergence speed.

Lastly, motivated by visualizations of the loss landscape of neural networks by Li et al.
Li et al. (2018) and Chaudhari et al. Chaudhari et al. (2017), we conclude our exploration
by analyzing the dynamics of Adam in valleys. In the field of partial differential equations,
which often study non-linear dynamics, valleys cause quite the headache because of the
oscillating behavior that many solvers are susceptible to. If Adam could quickly travel
through valleys, it could also possibly explain Adam’s convergence time.

2 Preliminary

2.1 Adam’s historical connections

In the original paper Kingma and Ba (2017), the authors introduced Adam as a mix of
AdaGrad and RMSProp, which are both stochastic gradient descent (SGD) methods. The
standard form of an SGD algorithm is

wt+1 = wt − η∇L(wt, (xt, yt)) (1)

Assuming that L is convex with respect to wt, each gradient step, for some training data
pair (xt, yt), should converge the global minimum of the loss. Unfortunately do to possible
resonances explored in the field of Partial Differential Equations, we scale the gradient step
by some learning rate λ.

AdaGrad innovated the standard SGD equation by ”adapting the learning rate”, that is
η was standardized by a measure of deviation of past gradients using their second moment,
seen in Equation 2.

wt+1 = wt −
η∑

i = 1t (∇L(wi, (xi, yi)))
2∇L(wt, (xt, yt)) (2)

RMSprop innovated on that idea to form a regret minimization algorithm robust to
non-stationary distributions, and they did so by changing the measure of deviation to be a
moving average.

wt+1 = wt −
η

σt + ϵ
∇L(wt, (xt, yt)),

σ2
t = β2σ

2
t−1 + (1− β1) (∇f(wt))

2
(3)

Inspired by the real world performance of those two algorithms, the authors for Adam
had seen the trend towards momentum and decided to apply the same concept to the
gradients as well. In addition, to avoid the bias of initializing both momentum terms at
zero, there is an attempt at bias correction.

2

Exploring the Dynamics of Adam

Figure 1: The original definition for Adam

2.2 Defining Adam

In the original paper Kingma and Ba (2017), the authors define Adam as in Figure 1. We
can reformulate Adam’s weight update to appear similar to the previous SGD methods in
Equation 4.

wt+1 = wt − η
gt

σt + ϵ̂

√
1− βt

2

1− βt
1

(4)

where, 
gt = β1gt−1 + (1− β1)∇f(wt),

σ2
t = β2σ

2
t−1 + (1− β1) (∇f(wt))

2 ,

ϵ̂ = ϵ
√
1− βt

2.

Note that gt and σt can also be expressed explicitly in terms of the gradient history.
gT = (1− β1)

T∑
t=1

∇f(wt)β
T−t
1 ,

σ2
t = (1− β1)

T∑
t=1

∇ (∇f(wt))
2 βT−t

2 .

For most of the analysis in this project, we analyze the long term behavior of Adam,
thus the bias correction has negligible effect on the gradient update. In this case, the update
rule simplifies into Equation 5.

wt+1 = wt − η
gt

σt + ϵ
(5)

3

Alexandre Kaiser

Remark, Adam is rarely tuned in practice, so our analysis can rely on the default values
for the hyperparameters as listed in the original paper.

β1 = 1− 10−1,

β2 = 1− 10−3,

η = 10−3,

ϵ = 10−8.

2.3 Dimensionality

Remark that since the gradient step η gt
σt+ϵ is an element-wise division of tensors with the

same units, the gradient step has no units. This is a very important point because it
reinforces the need to normalize data before training on Adam, or RMSProp, or even
Adagrad, otherwise the solution has no physical meaning. This point is doubly important
because future sections of this paper will find that important properties of Adam are purely
dependent of the hyperparameters which are very rarely tuned in practice, which would
only be reasonable if all problems are non-dimensionalized.

3 Noise profile

The first claim we want to explore is that of smoothing the gradients by reducing the noise.
Let’s start by assuming that each gradient can be written as follows.

∇L (wt, (xt, f(xt))) = ∇L(wt, f) +Nt (6)

Where the noise is unbiased E[Nt = 0. In this way, we can solve for the mean and
variance of gt.

E[gT] = E

[
(1− β1)

T∑
t=1

∇L (wt, (xt, f(xt)))β
T−t
1

]

= E

[
(1− β1)

T∑
t=1

∇L(wt, f)β
T−t
1

]
+ E

[
(1− β1)

T∑
t=1

Ntβ
T−t
1

]

= (1− β1)

T∑
t=1

∇L(wt, f)β
T−t
1

Var[gt] = E

((1− β1)
T∑
t=1

∇L (wt, (xt, f(xt)))β
T−t
1 − (1− β1)

T∑
t=1

∇L(wt, f)β
T−t
1

)2


= (1− β1)
2E

(T∑
t=1

Ntβ
T−t
1

)2


The mean and variance of σ2
t can be solved in the same way. Note that if the noise

of each gradient step is sampled independently of past gradients, then by the central limit
theorem we get that variance of gt tends to zero as 1√

T
for T steps. The convergence towards

4

Exploring the Dynamics of Adam

zero variance is thus slower than the unbiased terms converging exponentially fast to the
biased terms. Thus, the need for noiseless gradient steps is not terribly important early in
training. On top of that, in practice mini-batches (xt, f(xt)) are not necessarily independent
from past samples, this would add to the time it takes to converge towards a variance of
zero.

In the original paper Kingma and Ba (2017), the authors presented the following proof
for the bias correction of gt and σ2

t .

E[gT] = E

[
(1− β1)

T∑
t=1

∇L(wt, f)β
T
1

]

= (1− β1)E [∇L(wt, f)]
T∑
t=1

βT
1

= E [∇L(wt, f)] (1− βT
1)

Notice how they factored out E [∇L(wt, f)], which you can only do if it is constant
with respect to time, which is clearly an unreasonable assumption. In particular, it almost
contradicts the second proof in the paper which states that Adam converges to a global
minima for L convex. This is because if E [∇L(wt, f)] is a constant in time then we can
simplify the weight update in the following way.

E[wt+1 − wt] = −η
(1− β1)∇L(f)

∑T
t=1 β

t
1√

(1− β2) (∇L(f))2
∑T

t=1 β
t
2 + ϵ

= − sgn(∇L(f))η 1− βt
1√

1− βt
2

+O(ϵ)

The original convergence proof assumed that gradients were bounded, but given the same
assumption they made to remove the bias from gt and σt, the magnitude of the gradient
is irrelevant until the momentum is the same order as ϵ. Each step exists approximately
on the corners of a hypercube. To achieve convergence, the global optima needs to be flat
enough for the momentum to converge to order ϵ before leaving the optima (see the next
section for more details). In all generality, assumption that E[∇L(wt, f)] would not lead to
convergence.

Not only that, we will cover explicit loss surfaces in which E [∇L(wt, f)] is far from
constant. In all, even though the gradient steps have a vanishing variance, it is quite a
mystery that Adam is capable to perform empirically even though it’s gradient step is
biased.

4 Crossing a flat

The previous sections paints a very critical image of Adam, particularly for its use of a
moving average for the gradient. Nevertheless, Adam is widely preferred in practice over

5

Alexandre Kaiser

Adagrad and RMSProp for training deep neural networks, so for the remainder of this paper,
let’s uncover optimization scenarios that could explain the practical relevance of Adam.

This first section considers Adam’s ability to cover flat regions of the loss. Although a
flat region for a convex loss signifies convergence to the global optima, the motivation for
studying flats stems from the common observation that the loss for deep networks can have
these great plateaus, particularly near the origin. Unlike every other SGD method that use
the real gradient, which is zero on a flat, Adam’s use of momentum could give it the ability
to cross these sub-optimal flat regions of the loss function.

It is difficult to contextualize a distance in parameter space, especially given the that
the parameters are dimensionless. Nevertheless, we could compare a distance in parameter
space to the largest step that Adam can take along any one direction. In this way, we are
making a psuedo-conversion from unitless distance to Adam-steps.

Proposition 1. The gradient step for each weight is bounded by a function of the hyperpa-
rameters

|wt+1 − wt| ≤ η

√
β2(1− β1)√

(1− β2)(β2 − β2
1)

≈ 7.3η

Proof Let δi be the sequence of gradients observed by time t. The gradient step can be
written explicitly in terms of δi.

wt+1 − wt = −η
(1− β1)

∑t
i=0 δt−iβ

i
1

ϵ̂+
√
(1− β2)

∑t
i=0 δ

2
t−iβ

i
2

·
√

1− βt
2

1− βt
1

Lets first show by induction that

√
1−βt

2

1−βt
1

≤ 1 for all t ≥ 1.

At t = 1, we have
√
1−β2

1−β1
= 10−

1
2 < 1.

Now let 1− βt
2 ≤ (1− βt

1)
2

1− βt
2 ≤ (1− βt

1)
2

1− βt
2 ≤ 1− 2βt

1 + β2t
1

βt
2 ≥ β2t

1 − 2βt
1

By induction, since β2 > β2
1 , we show that 1− βt+1

2 ≤ (1− βt+1
1)2

βt+1
2 ≥ β2(β

2t
1 − 2βt

1) ≥ β2t+2
1 − 2βt+2

1 ≥ β2t+2
1 − 2βt+1

1

Thus the bias correction factor is bounded by 1. Due to the symmetry about the sign
of gt, let gt ≥ 0 for the following analysis. We can make an initial bound by removing the
bias corrections and ϵ.

|wt+1 − wt| ≤ η
1− β1√
1− β2

·
∑t

i=0 δt−iβ
i
1√∑t

i=0 δ
2
t−iβ

i
2

6

Exploring the Dynamics of Adam

We can bound the step by its supremum to find the following bound.

|wt+1 − wt| ≤ sup
δi ∀i

η
1− β1√
1− β2

·
∑t

i=0 δt−iβ
i
1√∑t

i=0 δ
2
t−iβ

i
2

= η
1− β1√
1− β2

sup
δi ∀i

∑t
i=0 δt−iβ

i
1√∑t

i=0 δ
2
t−iβ

i
2

To bound the ratio of sums we can utilize the Cauchy-Schwartz inequality, which states(∑
i

uivi

)2

≤

(∑
i

u2i

)(∑
i

v2i

)
We can rearrange the Cauchy-Schwartz inequality in the following way to identify our

maximization problem. ∑t
i uivi√∑t

i u
2
i

≤

√√√√ t∑
i

v2i

To apply the Cauchy-Schwartz inequality, let
ui =

√
βi
2δt−i,

vi =
βi
1√
βi
2

.
⇒

{
uivi = βi

1δt−i,

u2i = βi
2δ

2
t−i.

Applying the Cauchy-Schwartz inequality, we get the following bound for the Adam’s
step size.

|wt+1 − wt| ≤ η
1− β1√
1− β2

√√√√√1−
(
β2
1

β2

)t+1

1− β2
1

β2

Since β2 > β2
1 , the bound converges to its supremum as t → ∞. Thus the general bound

for the step size of Adam is

|wt+1 − wt| ≤ η

√
β2(1− β1)√

(1− β2)(β2 − β2
1)

≈ 7.3η

Now that we have a reference to contextualize distance, let’s solve for the maximum
distance covered in a flat.

Proposition 2. If the loss L(wt, f) is Lipschitz in ts first argument, then the distance each
weight can cross a flat is bounded by

lim
s→+∞

|ws − w0| ≤ η
β2(1− β1)

(
√
β2 − β1)

√
(1− β2)(β2 − β2

1)
≈ 73η

7

Alexandre Kaiser

Proof To begin, let g0 and σ0 be the values of gT and σT when Adam reaches the flat at
time T . To avoid confusion of time scales, let s denote the time since reaching the flat.

ws − w0 = −η

s−1∑
i=0

gi
σi + ϵ

√
1− βT+s

2

1− βT+s
1

gi = β1gi−1,

σ2
i = β2σ

2
i−1.

Firstly, since

√
1−βt

2

1−βt
1

≤ 1 for all t ≥ 1, we can upper bound the bias correction in the same

way as the previous proof.

|ws − w0| ≤

∣∣∣∣∣∣η
s−1∑
i=0

g0β
i
1

σ0

√
βi
2 + ϵ

∣∣∣∣∣∣
≤ η sgn(g0)

g0
σ0

·
s−1∑
i=0

(
β1√
β2

)i

= η sgn(g0)
g0
σ0

·
1−

(
β1√
β2

)s
1− β1√

β2

For default β1 and β2, we have that β1 <
√
β2, thus the series converges to

lim
s→+∞

|ws − w0| ≤ η sgn(g0)
g0
σ0

· 1

1− β1√
β2

(7)

To maximize the distance in the flat, we need to maximize the ratio g0
σ0
. Notice that this

is the same problem as Proposition 1. Thus we already know that the ratio g0
σ0

is maximized
by

max
δi ∀i

g0
σ0

=

√
β2(1− β1)√

(1− β2)(β2 − β2
1)

By combining the bound for the ratio g0
σ0

and the previous bound, we get a complete
bound for the maximum crossing distance in a flat region.

lim
s→+∞

|ws − w0| ≤ η
β2(1− β1)

(
√
β2 − β1)

√
(1− β2)(β2 − β2

1)
≈ 73η

Proposition 2 finds that Adam can cross a distance equivalent to approximately 10 steps
once it reaches a flat. It is particularly unusual that the distance it can travel has no relation
to the properties of the loss surface. This begs the question, if it were relevant to cross the
flat, then wouldn’t the hyperparameters need to be fine-tuned to each new loss surface?

In practice, even small neural networks are trained for a few thousand epochs (steps).
In comparison, 10 steps seems relatively insignificant.

8

Exploring the Dynamics of Adam

(a) 2-dimensional dynamics near a saddle (b) Gradient descent visualized as vector field

Figure 2: Various visualizations of dynamics

5 Dynamics near saddle

Research into the loss surface of neural networks suggests that overparameterized models
have loss function for which the only fixed points are either global optima, or saddles. This
implies that saddle-point dynamics are responsible for most of the time to converge, since
being near a saddle results in slow dynamics. In this section, we will inspect the behavior or
Adam near saddle points to observe whether it outperforms the other standard optimizers,
namely SGD, AdaGrad and RMSProp.

The intuition for why Adam might outcompete other methods comes down to the ap-
proximately flat region near saddle points. It is this flat nature that creates slow dynamics,
however Adam’s use of momentum might be able to escape the saddle disproportionally
quickly due to its ability to cross flat regions.

Figure 2a compares the dynamics of Adam, SGD, AdaGrad and RMSProp on a typical
saddle point characterized by the hessian

H =

[
−1 0
0 1

]
The Figure clearly shows that Adam is the most favorable out of the optimizers tested,

however it does in an unintuitive way, by avoiding the near-saddle dynamics entirely. The
reason for this comes from normalizig the gradients by the second moment, as we see all of
AdaGrad, RMSProp and Adam behave similarly in this respect. As we remarked in Section
3, if the gradients are similar to one another, then the gradient step will exist on the corners
of a hypercube, i.e. a diagonal. This is why AdaGrad and RMSProp act very similarly in
this setting. However, to explain why Adam outperforms those two, we must prove the
following statement.

Proposition 3. Adam’s gradient step is largest when the mass of the gradient history is
more recent, and smallest when the mass of the gradient history was earlier.

9

Alexandre Kaiser

Proof To prove this statement, let’s return to a familiar expression for the update size
when t is large enough for 1− βt

1 ≈ 1 and
√
1− βt

2 ≈ 1.

|wt+1 − wt| ≈ η
1− β1√
1− β2

·
∑t

i=1 δtβ
t−i
1√∑t

i=1 δ
2
t−iβ

t−i
2

Let’s drop the approximation and assume equality for the sake of simplicity. If the entire
gradient history were zero, and we could add mass to only one gradient, which one would
maximize the step?

max
i≥1

|wt+1 − wt| = max
i≥1

η
1− β1√
1− β2

· δtβ
t−i
1√

δ2t β
t−i
2

= η
1− β1√
1− β2

max
i≥1

(
β1√
β2

)t−i

Since β1 <
√
β2, the largest step would occur for i = t, and the smallest would occur

for i = 1

We can now explain why Adam outperforms the other methods n Figure 2a. As Adam
moves in a diagonal from its initial position, its gradient along w1 increases and its gradient
along w2 decreases. If the gradients along w1 are increasing, then most of the mass of its
history is recent, as opposed to the decreasing gradients of w2 which have most of its mass
at the beginning of the gradient history. Proposition 3 explains that Adam’s gradient step
will thus favor w1 over w2.

6 Stability in valleys

The last environment that we will look at is narrow valleys. A narrow valley is similar to a
saddle in that there is a direction along which points are being attracted, however along a
second direction there is a smooth monotonic slope (as opposed to a repulsive direction in
the case of a saddle). A valley is considered narrow if the attracting direction dwarfs the
monotonic slope of the second direction. The reason that valley are challenging to optimize
over is because of the possible oscillations produced by taking gradient steps along the very
attractive direction, thus making disproportionally less progress along the direction of the
valley.

Let’s consider a first valley for a smooth function f(x, y) = x2+10−3y2. The movement
along the x direction is orders of magnitude faster than that of the y direction. In Figure
3, we plot the dynamics of SGD, Adam, AdaGrad and RMSProp, as well as the associated
vector field. Each path has the same length of 106. To get a sense of convergence time,
each plot has 3 x-markers used to mark the quarter, half and 3-quarter mark of each path.
From a gradient flow perspective, SGD avoided having any unnecessary oscillating behavior,
however it doesnt appear to be the fastest to find the origin. Adam and RMSProp both
find the origin within the first quarter of their paths. Further analysis reveals that Adam

10

Exploring the Dynamics of Adam

(a) 2-dimensional dynamics near a smooth valley (b) Associated vector field

Figure 3: Comparing optimizers on a smooth valley

(a) 2-dimensional dynamics near a sharp valley (b) Associated vector field

Figure 4: Comparing optimizers on a sharp valley

was within 10−3 of the origin in 3113 steps, whereas RMSProp achieved the same feat in
1086 steps. However, Adam doesn’t converge.

Similarly for Figure 4, the only difference is that the function uses absolute values
instead of quadratics to form what we term a sharp valley, f(x, y) = |x| + 10−4|y|. The
result finds that SGD is uselessly oscillating about its initial point, AdaGrad follows closest
to the gradient flow solution but runs out of time, and both Adam and RMSProp find
their way to the origin very quickly. Adam quickly falls into a stable oscillating behavior
along w1, whereas RMSProp has decaying oscillations all the way to the origin. In that
way, RMSProp resembles the dynamics of an underdamped mechanical system, which we
know converges eventually, whereas Adam gets stuck in its stable periodic solution and
thus doesn’t converge. Further analysis also reveals that RMSProp again converges faster
to within 10−3 of the origin, doing so in 220 steps, compared to Adam which needed 900
steps.

11

Alexandre Kaiser

In Figures 3 and 4, it is difficult to tell whether Adam, RMSProp or SGD in the sharp
vase converge. To attempt to visualize the oscillatory behavior of each method, Figure 5
plots the evolution of w1 for each optimizer in both types of valleys. It seems that Adam is
the only optimizer that doesnt appear to converge to w1 = 0 in either setting. We capture
this observation with Proposition 4.

Proposition 4. Adam has a 2-periodic fixed point if

∃w,C s.t. ∇L
(
w − η

C(1− β1)

(C2 + ϵ)(1 + β1)
, f

)
= −∇L(w, f) = C

Proof The intuition behind this proof is that the drift which enables Adam to cross flats
also gives leads to an oscillating behavior. First let’s show that Adam has a periodic point
of period 2. Let ∇L(wt, f) = (−1)tC, for some constant C.

gt = (1− β1)
∞∑
i=0

(−1)t+iCβi
1 = (−1)tC

1− β1
1 + β1

,

σ2
t = (1− β1)

∞∑
i=0

C2βi
2 = C2.

Thus we see that σt tends to a constant, and gt is 2-periodic. This would mean

wt+2 − wt = −η
gt

σt + ϵ
− η

gt+1

σt+1 + ϵ
= − η

C2 + ϵ
(C − C)

1− β1
1 + β1

= 0

For these dynamics to be possible, there needs to exist a pair of points that are one step
from each other such that their gradients are opposites, i.e. if

∃w,C s.t. ∇L
(
w − η

C(1− β1)

(C2 + ϵ)(1 + β1)
, f

)
= −∇L(w, f) = C

I only had enough time prove the existence of a 2-periodic fixed point, however it is
worth noting that all other gradient descent methods are susceptible to 2-periodic oscil-
lation, which is why the PDEs community uses robust solvers with adaptive time steps.
Nevertheless, Proposition 4 serves as a prototype for the k-periodic solutions that Adam
is susceptible to precisely because the moving average is not an unbiased estimate of the
gradient. In Figure 5a is 2-periodic but in Figure 5b it is 12-periodic. That could be a
deal-breaker in some applications but, again, there is substantial empirical support for us-
ing Adam to train neural networks, so the impact of these large periodic issues must be
smaller than the other errors associated with deep learning.

Since RMSProp actually converges and does so faster than Adam, valley’s can not
explain the use of Adam over RMSProp.

12

Exploring the Dynamics of Adam

(a) Oscillations in the smooth valley (b) Oscillations in the sharp valley

Figure 5: Oscillations of each optimizer

7 Conclusion

The reason for Adam’s dominance in the market of optimizers for deep neural networks
remains a mystery. In this paper, we explored how the bias of the moving average of the
gradients could benefit Adam in cases where it might need to cross a flat, or to escape a
saddle. However, other explanations such as the noise reduction and its speed in valley’s
appear unfavorable.

References

F. Geb A. Jacot, B. Şimşek, C. Hongler, and F. Gabriel. Saddle-to-saddle dynamics in deep
linear networks: Small initialization training, symmetry, and sparsity. 2022.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Chris-
tian Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing
gradient descent into wide valleys, 2017.

D.P. Kingma and J. Lei Ba. Adam: A method for stochastic optimization. 2017.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the
loss landscape of neural nets, 2018.

13

	Introduction
	Preliminary
	Adam's historical connections
	Defining Adam
	Dimensionality

	Noise profile
	Crossing a flat
	Dynamics near saddle
	Stability in valleys
	Conclusion

